
How a  Globa l  Creat ive  Agency  Tapped Into  Data  Sc ience

F I N D I N G  T H E  S T O R Y :



AGENDA



Building buy-in around machine learning

Bringing machine learning into the market research workflow
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MACHINE LEARNING SUCCESS IS BUILT BY WORKING 
EFFECTIVELY WITH PEOPLE, NOT JUST MACHINES.



WHO IS             ?



A team of 800 . . .

Look, there’s me.



. . . unusually fond of selfies.



M U S I C F I L M ,  T V  &  S T R E A M I N G F A S H I O N A R T S C U L I N A R Y S P O R T S E D U C A T I O N
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Work Samples
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Video Link: https://youtu.be/AHCXJfQ1uQY

https://youtu.be/AHCXJfQ1uQY


THE ROLE OF INSIGHTS
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ADVERTISING THAT DOESN’T HAPPEN AT THE  
POINT-OF-PURCHASE MUST WORK THROUGH MEMORY.



We used to think advertising 
worked like this:

Find the winning set of traits that will 
persuade customers to buy.



Now we know advertising 
works more like this:

Link a brand to as many traits as possible so it 
comes to mind easily as a solution to a problem.
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DON’T BELIEVE ME?
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DON’T BELIEVE ME? 

NIKE 
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DON’T BELIEVE ME? 

NIKE 

CORONA 
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DON’T BELIEVE ME? 

NIKE 

CORONA 

GEICO
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THIS IS WHY WE NEED TO UNDERSTAND THE MEMORIES AND 
FEELINGS THAT PEOPLE HAVE WHEN THEY TRY TO SOLVE A PROBLEM.



BUSINESS OPPORTUNITY
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CONSUMER INSIGHTS ARE A COMPETITIVE ADVANTAGE.  

MACHINE LEARNING HELPS US FIND NEW AND NOVEL 
PATTERNS IN MARKETING DATA.



MAKING ML APPROACHABLE



It starts with getting support from management

Look, there’s me.



Building buy-in

•  Slack Channel 
•  Infographics 
•  Briefing Books 
•  Case Studies 
•  Lunch & Learns
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Source:“The Largest Vocabulary in Hip Hop” (Daniels, 2019)

https://pudding.cool/projects/vocabulary/
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Building buy-in

•  Slack Channel 
• Infographics 
•  Briefing Books 
•  Case Studies 
•  Lunch & Learns

“Enough to be dangerous” 
• Value to clients 
• Use cases 
• Typical budget/timeline 
• Client FAQs 
• Top technical terms 
• Deliverables 
• Roadblocks/Watch-outs
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TITANIC CASE STUDY



With a little help from 
Jack and Rose . . .

. . . we’ll build a model 
to predict who survived.Spoiler: It’s not Jack



Interpret  the  results .
MaleFemale

Sex

NO# of Sibl ings or 
Spouses on Board> 5

≤  5NO

# of Parents or 
Children on Board> 6

≤  6
NO

Passenger Class

First Second Third

YES

Age Passenger Fare

Age 
Unknown > 56≤  56 > 33≤  33

YES NO YES NOYES
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BRINGING ML INTO THE MARKET 
RESEARCH WORKFLOW



F IELDWORKDESIGN DEVELOP & 
TEST  INSTRUMENT

ANALYSIS REPORTING
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Anonymized CRM Data
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Anonymized CRM Data

FIELDWORKDESIGN DEVELOP & 
TEST  INSTRUMENT

ANALYSIS REPORTING

Data Mining Workflow

Business Objectives



APPLICATIONS



Applications

Decision trees for customer segmentation 

Message testing as a classification problem



Applications

Decision trees for customer segmentation 

Message testing as a classification problem



Somewhat Unlikely

How l ike ly  are  you  to  make  a  donat ion  to  [organ izat ion]  in  the  next  12  months?

19

16

18

11

37

Very Likely

Very  Unlikely

Somewhat Likely

Neutral

Likely donor (35%)

Unlikely donor (65%)

App ly ing  Dec is ion  Trees  to  Donor  Segmentat ion



Wi l l i ng  to  Vo lun teer  fo r  
Fundra i s ing  E f fo r t s

False True

At tended  [Event ]  
Pas t  12  Months

False True

Segment  1  
5% o f  aud ience  

8% o f  donors

Average  G i f t  
Amount

> $450 ≤ $450

Average  G i f t  
Amount

> $2,110 ≤ $2,110

Segment  2  
6% of  aud ience  

7% o f  donors

Segment  3  
12% o f  aud ience  

30% o f  donors

Segment  4  
67% o f  aud ience  

46% o f  donors

Segment  5  
10% o f  aud ience  

9% o f  donors

REDACTED DATA - FOR DEMONSTRATION ONLY



Applications

Decision trees for customer segmentation 

Message testing as a classification problem
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WILL BUY WON’T BUY

IF NOT CONTACTED . . .

?
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IF CONTACTED .  . .

Do Not Disturb Lost Cause

Sure Thing Persuadable
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?

?

WILL BUY WON’T BUY

IF NOT CONTACTED . . .

?

?WILL BUY

WON’T BUY

IF CONTACTED .  . .

Do Not Disturb Lost Cause

Sure Thing Persuadable

Positive Lift

No Lift

No Lift

Negative Lift
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TARGETING

OUTCOME

Look, there’s a 
classification problem.

POSIT IVE

NEGATIVE

POSIT IVE

NEGATIVE

X

X

RANDOM  
SAMPLE

CONTROL

EXPOSED

DATA 
WAREHOUSE
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A FINAL DATA POINT: 

WITH ONE (RARE) EXCEPTION, THE ENTIRE POPULATION 
IS MADE UP OF OTHER PEOPLE.
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MACHINE LEARNING SUCCESS IS BUILT BY WORKING 
EFFECTIVELY WITH PEOPLE, NOT JUST MACHINES.



DISCUSSION
@SHOCKLEY_MRX ON TWITTER 

BSHOCKLEY (AT) 160OVER90 (DOT) COM

Brandon Shockley




T H A N K  Y O U


